
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

USE OF MACHINE LEARNING
TECHNIQUES TO SOLVE SCHEDULING
PROBLEMS

Bc. Evgeniya Brichkova

Supervisor: doc. Ing. Přemysl Šůcha, Ph.D.
Field of study: Open Informatics
Subfield: Data Science
May 2021

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

421672Osobní číslo:EvgeniyaJméno:BrichkovaPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Datové vědySpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Využití metod strojového učení pro řešení úloh rozvrhování

Název diplomové práce anglicky:

Use of machine learning techniques to solve scheduling problems

Pokyny pro vypracování:
Práce si klade za cíl analýzu a návrh algoritmů pro řešení problémů
rozvrhování s využitím metod strojového učení. Hlavní důraz je kladen na
synergii mezi tradičními state-of-the-art přístupy a metodami strojovým
učením. Postupujte podle následujících bodů:
1) Proveďte rešerši literatury zaměřenou na studovanou oblast.
2) Na základě výsledků v práci [2] vyberte vhodný problém pro aplikaci
metod strojového učení. Můžete zvážit například problémy „1 | rj | sum
Uj“, „1 | rj | sum wj Uj“ a „P | | sum wj Cj“
3) Navrhněte a implementujte algoritmus řešící vybraný problém.
4) Na základě struktury problému navrhněte způsob generování
trénovacích instancí.
5) Navržený algoritmu otestujte a výsledky porovnejte s výsledky
dosaženými v literatuře.

Seznam doporučené literatury:
[1] Václavík R. - Novák A. - Šůcha, P. - Hanzálek, Z. Accelerating the Branch-and-
Price Algorithm Using Machine Learning In: European Journal of Operational
Research. 2018, vol. 271, no. 3, pp. 1055-1069.
[2] Michal Bouska, Antonin Novak, Premysl Sucha, István Módos, Zdenek Hanzálek:
Data-driven Algorithm for Scheduling with Total Tardiness. International Conference
on Operations Research and Enterprise Systems 2020: 59-68.
[3] Anton Milan, Seyed Hamid Rezatofighi, Ravi Garg, Anthony R. Dick, Ian D. Reid:
Data-Driven Approximations to NP-Hard Problems. Conference on Artificial
Intelligence AAAI 2017: 1453-1459.

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. Ing. Přemysl Šůcha, Ph.D., katedra řídicí techniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 21.05.2021Datum zadání diplomové práce: 29.07.2020

Platnost zadání diplomové práce: 19.02.2022

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Ing. Přemysl Šůcha, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomantka bere na vědomí, že je povinna vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studentky

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Acknowledgements
I thank my supervisor doc. Ing. Přemysl
Šůcha for the guidance and valuable ad-
vice during this work. I thank Ing. Michal
Bouška for the help with developing ideas.
I thank my fiancé Ananías Hilario for
the incredible support and help during
this work. I thank my mother Marina
Brichkova for the support and believing
in me during my whole studies and I thank
my son Kalev David, who inspired me to
do my best.

Thank you.

Declaration
I hereby declare that the presented work
was made independently, and that I have
listed all the sources of information used
within it, in accordance with the method-
ical instructions for observing the ethical
principles in the preparation of the uni-
versity thesis.

Prague, 21 May 2021

v

Abstract
This work studies algorithms for solving
scheduling problems using machine learn-
ing, specifically, deep learning methods.
We concentrate on a scheduling problem
characterized as 1 | rj |

∑
j∈J Uj in the

standard notation, i.e., scheduling a set
of jobs on a single machine. Each job is
characterized by its processing time, re-
lease time, and due date. The objective
of this NP-hard combinatorial problem
is to minimize the number of jobs that
were not completed before the due date.
The thesis surveys the literature related
to the addressed scheduling problem and
the existing machine learning techniques
used to solve combinatorial problems. Fur-
ther, we design several machine learning-
based methods to solve 1|rj |

∑
j∈J Uj that

emphasize the combination and interac-
tion between traditional state-of-the-art
approaches for scheduling and machine
learning methods. The experimental re-
sults show that the proposed methods can
solve the problem instances with up to 160
jobs with a very low optimality gap.

Keywords

scheduling, number of tardy jobs,
machine learning, deep learning,
recurrent neural networks, transformer,
attention mechanisms, seq2seq, sequence
to sequence, encoder-decoder model

Supervisor

doc. Ing. Přemysl Šůcha, Ph.D.

Abstrakt
Tato diplomová práce studuje algoritmy
pro řešení úloh plánování pomocí stro-
jového učení, konkrétně metod hlubo-
kého učení. Soustředí se na problém roz-
vrhování, který je charakterizován jako
1 | rj |

∑
j∈J Uj , tj. rozvrhování sady úloh

na jednom počítači. Každá úloha se vyzna-
čuje časem zpracování, časem vydání a ter-
mínem splnění. Cílem tohoto NP-těžkého
kombinatorického problému je minimali-
zovat počet úloh, které nebyly dokončeny
před termínem splnění. Diplomová práce
studuje literaturu týkající se řešeného
problému plánování a existujících tech-
nik strojového učení používaných k řešení
kombinatorických problémů. Dále navrhu-
jeme několik metod založených na strojo-
vém učení, abychom vyřešili 1|rj |

∑
j∈J Uj ,

které zdůrazňují kombinaci a interakci
mezi state-of-the-art přístupy pro rozvrho-
vání a metody strojového učení. Výsledky
experimntů ukazují, že navrhované me-
tody mohou vyřešit problémové instance
až se 160 úlohami s velmi malou relativní
odchylku od optima.

Klíčová slova

plánování, počet opožděných úloh,
strojové učení, hluboké učení, rekurentní
neuronové sítě, transformátor,
mechanismy pozornosti, seq2seq,
sekvence po sekvenci, model
kodér-dekodér

Překlad názvu

Využití metod strojového učení pro řešení
úloh rozvrhování

vi

Contents
1 Introduction 3
2 Related work 5
2.1 Scheduling . 5
2.2 Machine Learning 7
2.3 Challenges 12
2.3.1 Feasibility 12
2.3.2 Modeling 13
2.3.3 Scaling 13
2.3.4 Data Generation 13

3 Background Theory 15
3.1 Types of Machine Learning (ML)
Tasks . 15

3.2 Performance Measure 15
3.3 ML Model Generalization and the
Bias-Variance Trade-Off 16

3.4 Overfitting and Underfitting . . . 17
3.5 Hyperparameters 18
3.6 Recurrent Neural Networks 18
3.6.1 Teacher Forcing 21
3.6.2 Gated Recurrent Neural
Network (RNN) and The Long
Short-Term Memory 22

3.7 Sequence-to-Sequence Models . . 23
3.8 Attention Mechanisms 24
3.8.1 Self-Attention 25
3.8.2 Scaled Dot-Product Attention 26
3.8.3 Multi-Head Attention 26
3.8.4 Bahdanau Attention 26
Main Idea . 26
Formulation 28

3.8.5 Luong Attention 29
3.9 Transformers 30
3.9.1 Architecture of the
Transformer 30

4 Proposed Methods 33
4.1 Data Generation 33
4.2 Normalization of the Input to the
NN Models . 35

4.3 Proposed Models for Tardiness
Prediction . 36
4.3.1 Definitions 36

4.3.2 Model 1: Structured Tardiness
Probability P(o | x; Θ) Using the
LSTM-based Sequence-to-Sequence
Model . 36

4.3.3 Model 2: Structured Tardiness
Probability P(o | x; Θ) Using the
Transformer-based Model 38

4.4 Accuracy Criteria of the NN . . . 40
4.5 Construction of the Schedule with
the CP . 40

4.6 Implementation details 41
5 Experiments 43
5.1 Training on Varying Instance
Sizes . 44

5.2 Training on Datasets with Varying
Amounts of Data per Instance Size 45

5.3 Training with Varying
Normalization Types 46

5.4 Prediction Time Comparison
Between Transformer-based CP
Solver and ILP Solver 47

5.5 Performance Comparison Between
Transformer-based CP Solver and
LSTM-based Sequence-to-Sequence
CP Solver . 48

6 Conclusion 49
6.1 Discussion 49
6.2 Future Work 50
Bibliography 51

vii

..

1

2

Chapter 1

Introduction

This thesis studies the scheduling problem of minimizing the amount of tardy
jobs on a single machine 1 | ri |

∑
Ui. According to the definitions given by

Pinedo [40], a scheduling problem is described by a triplet α | β | γ. The
problem studied in this thesis is interpreted as follows: in the field α we have
1, representing the usage of a single processing machine; in the field β we
have release dates, indicating that job i cannot start before its release date ri;
the objective, as seen in the γ field, indicates that we are trying to minimize
the total amount of tardy jobs. In the following work, the processing times
of jobs are referred as to pi and the due dates of jobs are referred to as di.

This target has wide applications in many production and service environ-
ments. It reflects factors of external costs based on due dates, such as customer
satisfaction. Therefore, the number of tardy jobs can represent orders of
customers that are not satisfied [36]. The possible applications include, for
example, logistics services and factory businesses. The goal of this thesis is to
approach the problem from the perspective of machine learning, particularly
deep learning. The problem is represented as a regression and classification
task, where the goal is to predict which jobs are tardy within the given
instance. Therefore, the algorithm assigns tardiness to jobs based on the
features that are learned and extracted by the neural network. This work
focuses on two main approaches: an LSTM-based Sequence-to-Sequence archi-
tecture [26] and a Transformer-based architecture [47]. The data generation
method is borrowed from [46] and is not included in the focus of this thesis.
The text is organized in the following way: the second chapter studies the
state of the art, including the scheduling problems and the machine learning
techniques applied to them. The third chapter gives the overview of the
machine learning techniques used in this thesis. The fourth chapter explains
the proposed methods. The fifth chapter describes the experiments, shows
the results of the experiments and presents a brief analysis of each of them.
The sixth chapter concludes the work with an overall discussion of the results
and possible research directions that can be taken in the future on this topic.

3

4

Chapter 2

Related work

2.1 Scheduling

Problem 1 | rj |
∑

j∈J Uj has been proven to be NP-hard by Lenstra et al. [33].
When the release and due dates are similarly ordered, i.e., ri < rj =⇒ di ≤
dj ,∀(Ji, Jj)), Kise et al. [29] gave an O(n2) algorithm and Lawler [32] gave a
O(n logn) algorithm for the same special case.

Dauzère-Pérès [14] proposed a lower bound based on the relevance of a Mixed-
Integer Linear Programming (MILP) formulation, where new constraints are
added in which big-M is required. They found out, however, that by using
the structural properties of the problem, a lower bound independent of big-M
can be derived by solving a maximum of log (2(n− 1)) Linear Programming
(LP) problems; thus, they developed a method for obtaining the lower bound
which doesn’t depend on big-M. Then, the heuristic was presented and its
effectiveness was computationally studied by comparison with the provided
lower bound. Their testing instances assume up to 50 jobs. Computing times
to find the lower bound are usually less than 15 seconds when n = 10, less
than 1 minute when n = 20, but can increase up to 21 minutes when n = 50.
For the heuristic, computing times are always less than 1 second.

Lasserre and Queyranne [31] proposed an original MILP formulation of
several one-machine sequencing problems, based on the generalized due date
scheduling problems introduced in Hall [24] and Hall et al. [25]. Among the
objectives of these problems are, for example, the minimization of makespan,
maximum lateness or mean flow time. In this formulation, jobs are specified by
their position in the sequence. Sequencing decisions, then, can be formulated
without the big-M coefficient usually required in classical formulations. As
observed by Dyer and Wolsey [15], the big-M coefficient induces very poor
lower bounds by LP relaxation.

Baptiste et al. [3] proposed two new lower bounds. The first one is a flow-
based lower bound, obtained by Lagrangian relaxation. The other lower
bounds are based on the adjustment of the release and due dates in order

5

2. Related work.....................................
to match polynomially-solvable cases of the problem at hand. They include
a nested-case lower bound, where the basic idea lies on the decrease of the
release dates in such a way that jobs become nested, i.e., their time-windows
are either included or do not overlap in time. For this purpose, the particular
preemptive schedule is obtained by applying the Earliest Due-Date (EDD)
priority dispatching rule. The next lower bound is based on the Mine, Ibaraki,
and Kise algorithm by Kise et al. [29], where the data is adjusted in order
to match the conditions: ∀i, j ∈ J, ri ≥ rj =⇒ di ≤ dj . In addition,
they introduced the dominance properties, which allow: 1) to decompose
the problem into independent sub-problems; 2) to add some precedence
constraints between jobs; and, 3) to determine that some jobs are on-time. The
elimination rules include those initially designed for 1|rj |Lmax and are adapted
to our problem and the collection of specific time-windows adjustments.
Their branch-and-bound approach works optimally up to instances of size
200. The algorithm solved 73.33% of the instances within the one-hour cut-
off limit when the processing times of jobs are randomly generated from a
uniform distribution Unif (1, 100), but only 56.67% of the problems when the
processing times are generated from a uniform distribution Unif (25, 75).

One more approach based on the Lagrangian relaxation was also used by
Dauzère-Pérès and Sevaux [13] for the problem 1 | rj |

∑
j∈J Wj · Uj . The

paper is based on the notion of master sequence, i.e., a sequence from which
an optimal sequence can be extracted. In their work a new MILP formulation
is introduced. Using this formulation, a Lagrangian relaxation algorithm
is derived. They have also introduced the MILP formulation for the non-
weighted case problem: 1 | rj |

∑
j∈J Uj . The experiments were conducted on

instances of size up to 160 jobs. The Lagrangian relaxation algorithm was
first compared with solutions obtained by using the MILP formulation in
ILOG-CPLEX solver. However, even for small size problems of 80 jobs, very
large CPU times were observed with the MILP solver for numerous instances.
For example, in a given instance, the search was stopped after 19 hours with
the optimal solution, but its optimality was not proved. If the accuracy level
is reduced to the one of the Lagrangian relaxation algorithm, the CPU time
of the MILP solver decreases but remains very large.

For solving 1 | rj |
∑

j∈J wj · Uj , M’Hallah and Bulfin [38] proposed an exact
algorithm for which the experiments indicate that the algorithm solves both
weighted and unweighted problems. The approach is based on Surrogate
Relaxation (SR) resulting in a multiple-choice Knapsack provides the bounds
for the Branch-and-Bound algorithm. They first developed a mathematical
model for the most general problem, 1 | rj |

∑
j∈J wj · Uj . Then, they used

multipliers which determine the tightness of the bound provided, in order
to form a SR of the 1 | rj |

∑
j∈J wj · Uj . The Surrogate Dual (SD) has a

single resource constraint and a set of multiple-choice constraints, so it looks
like a multiple-choice Knapsack problem except that it has, in addition to
the binary variables, the continuous variables representing job completion
times. To obtain a binary Multiple-Choice Knapsack Problem (MCKP), they

6

.................................. 2.2. Machine Learning

replaced the completion time-continuous variables by either their upper or
lower bounds, which results in a further relaxation of the original problem.
The relaxed problem has the special structure of a MCKP. The solution
value of MCKP is a bound to 1 | rj |

∑
j∈J wj · Uj . While the bounds MCKP

yields may not be as tight as the bounds obtained by the SD of the SR,
MCKP remains easier to solve. Thus, the disadvantage that we obtain a
looser bound is counterbalanced by its ease of computation. Finally, the
solution of MCKP is bounded using the continuous relaxation of MCKP.
Then, there is presented a heuristic that gives an initial feasible solution for
the Branch-and-Bound algorithm.

Ourari et al. [39] presents how, using a MILP formulation, both good-quality
lower and upper bounds can be computed for the 1 |rj |

∑
j∈J Uj problem. The

proposed approach differs from the Branch-and-Bound approaches described
by Baptiste et al. [3], M’Hallah and Bulfin [38] and Lenstra et al. [33], in the
fact that, since MILP is used, it is more generic: the model can be extended,
so new constraints can easily be added to the model. Their MILP formulation
is based on the dominance conditions proposed by Erschler et al. [16], which
defines a set Sdom of dominant job sequences, with respect to the feasibility
problem, for the Single Machine Scheduling Problem (SMSP). The approach
has been tested on the instances generated by Baptiste et al. [3] (of size up
to 160 jobs) and the results show that the gap between the upper and lower
bound is, on average, very tight. Moreover, even though finding an optimal
solution is not the aim of their approach, experiments have shown that their
approach proves optimality of 48 instances that were not optimally solved by
Baptiste et al. [3]. Further, Baptiste et al. [3] did not succeed to solve the
instances of over 160 jobs. Experiments on the quality of the bounds show
that the lower bound equals the optimal solution in 90% of the cases, while
the upper bound is equal or better than the State of the Art (SOTA) in 98%
of cases.

In 2018, Garraffa et al. [18] proposed an exact exponential algorithm for
the Single Machine Total Tardiness Problem (SMTTP) which exploits the
structure of a basic Branch-and-Reduce framework based on the Lawler’s
decomposition property that solves the problem with worst-case complexity in
time O(3n) and polynomial space. The proposed algorithm is an improvement
over the referenced technique, with the embedding of a node merging opera-
tion. Its time complexity converges to O(2n) keeping the space complexity
polynomial. Bouška et al. [9] note that this the fastest known exact algorithm
for SMTTP to this date and is able to solve instances with up to 1300 jobs.

2.2 Machine Learning

In many cases, when solving problems that require optimizations, such as
scheduling or the Traveling Salesman Problem (TSP), we would be content
to find a good approximation in a short period of time. This is one of the

7

2. Related work.....................................

Figure 2.1: The original image is taken from the paper by Bengio et al. [7]. The
machine learning model is used to augment an operation research algorithm with
valuable pieces of information.

reasons why ML is a good match for Operations Research (OR) problems;
we can think of OR algorithms being enhanced by ML models in several
ways: 1) providing end-to-end predictions; 2) performing the selection of
hyper-parameters which need to be set in order to configure OR algorithms;
3) providing with an initial approximate solution or providing useful initial
information to OR algorithms (see Figure 2.1); 4) as a component called
all-throughout the execution of OR algorithms (e.g., a component guiding
the search based on a data-driven heuristic value provided by the ML model;
see Fig. 2.2).

The majority of the ML methods in scheduling are based on the modification
of the dispatching rules, done dynamically each at a time step, with the
decision to be taken based on a system condition. Some inspirational works
for the usage of machine learning in scheduling problems appeared starting
from beyond the machine learning field [22, 27]. In most cases, the proposed
approaches have selected the dispatching rules by the simulation runs. Later
on, the results from the simulations were used as training data for the machine
learning algorithms applied for these problems.

One of the examples of this approach is represented by the work of Choi
et al. [11], who solve the re-entrant hybrid flow shop problem, HF | Re −
entrant | Cmax,

∑
j∈J Tj . They were inspired by the old framework made by

Jeong and Kim [28], who in 1998 proposed the real-time scheduling mechanism
using simulation and dispatching rules for flexible manufacturing systems.
The architecture of both frameworks is based on the interaction between
three main components: scheduler, controller, and the system state evaluator.
The scheduler determines the appropriate time for choosing new dispatching
rules, the controller serves as an engine for the system states monitoring
and the communication between components. The system state evaluator
is the place of the difference between the approaches: the old approach
uses simulation for evaluating candidate dispatching rules while the new
approach is rooted in the inductive learning field. They suggested a real-time
scheduling mechanism in which a decision tree is used to select an appropriate
dispatching rule before considering the rule change. The decision nodes
of the tree are represented with the system status such as a total number
of remaining operations, total processing time, and others. For the tree
construction, the Iterative Dichotomizer algorithm by Quinlan [41] is used.
The test and evaluation showed that the differences in performances of the old

8

.................................. 2.2. Machine Learning

Figure 2.2: The original image is taken from the paper by Bengio et al. [7].
The combinatorial optimization algorithm repeatedly queries the same machine
learning model to make decisions. The machine learning model takes as input
the current state of the algorithm, which may include the problem definition.

simulation-based approach and the decision tree approach are not significant.
The evaluation was performed on models with the following characteristics:
1) jobs with inter-arrival value drawn from an exponential distribution with
a mean of 10, ∆r ∼ Exp (λ = 1

10); 2) due dates sampled from a uniform
distribution dj ∼ Unif (2 · pj , 4 · pj) where pj is the sum of operation times
for job j; 3) major breakdowns occur with an inter-failure time sampled
∆F+ ∼ Exp (1

15000), and repair times were sampled ∆R+ ∼ Exp (1
500); 4)

minor breakdowns occur with an interval sampled ∆F− ∼ Exp (1
6000) and

repair times were sampled ∆R− ∼ Exp (1
150); 5) 200 maximum waiting jobs.

A major application of Reinforcement Learning (RL) in scheduling for data
center cooling was reported, although without concrete performance measures,
by Evans and Gao [17] at Google. The field of RL has also gained popularity as
a means to tackle scheduling problems, especially in the field of manufacturing
scheduling. In RL it is possible to train for objectives that are hard-to-optimize
directly due to lack of precise models if there exist reward signals that coincide
with the objective. Mao et al. [35] use RL to solve job scheduling problems
in computer clusters, Rm | online rj |

∑
j∈J Sj = Cj−rj

pj
.

The main idea of RL is the following: an agent faces a particular state of the
environment he is located in, and he must choose among several actions to
take; when the agent chooses his action, he eventually receives a reward which
is representative of how much he achieved his overall goal. In the context of a
scheduling environment, the system state can be described with, for example,
the number of the jobs or tardy jobs in a buffer, as well as the tardiness or
lateness of those jobs.

Wang and Usher [50] proposed the approach for the single-matching Dynamic
Job-Shop Scheduling (DJSS), which is based of the dispatching rules selection
and RL. Based on the system state, which is represented by the number of
jobs in the buffer and the estimation of the total lateness of these jobs, the

9

2. Related work.....................................

Figure 2.3: The original image is taken from the paper by Mao et al. [35]. An
example of a state representation, with two resources and three pending job
slots.

agent selects the best dispatching rule. Q-learning is used for the dispatching
rules selection, in particular when there are at least two jobs in the buffer.
The method is adopted for three cases of the system objective: minimize
maximum lateness, minimize the number of tardy jobs, minimize mean
lateness — and the agent’s reward function is generated accordingly: if the
currently completed job is tardy, the learning agent receives a penalty of −1,
otherwise, a reward of +1 is assigned. In their simulations, the time between
job arrivals ∆r = rj − rj−1 follows an exponential distribution with a mean of
10, ∆r ∼ Exp (λ = 1

10); the estimated processing times of jobs were uniformly
distributed pj ∼ Unif (7.5, 8.5); the due dates were set according to the
formula dj = rj − αj · pj , with αj uniformly distributed αj ∼ Unif (1.5, 2.5).

In the year 2017, Shahrabi et al. [42] proposed an improvement over the
previous study using Variable Neighborhood Search (VNS) which is introduced
to address the DJSS problem. The VNS is a meta-heuristic optimization
method that can be used to solve combinatorial problems. With the arrival
of each new job, the VNS gets an instance of the static job-shop problem, for
which it finds the optimal solution. The parameters of the VNS algorithm
crucially affect the algorithm’s performance; the agent’s action is the selection
of these parameters at each point of rescheduling. This happens with the
change of the system state (number of jobs on the shop-floor and mean
processing time of current operations).

RL has been recently combined with the Deep Learning (DL) techniques in
what is now known as Deep Reinforcement Learning (DRL). The usage of
a lookup table to store or update the states (or states and actions like in
the case of Q-Learning) would be very expensive and sometimes impossible
for large state spaces, as is the case of many problems of interest, including
scheduling problems. In addition, generalization considerations are not taken
into account when learning using the table representation, due to the lack of
shared parameters between the states. DRL introduces the usage of the DL
for efficient value estimation and policy definition.

10

.................................. 2.2. Machine Learning

Figure 2.4: The original image is taken from the paper by Ye et al. [51]. The
state representation of offline scheduling scheduling.

Mao et al. [35] in the year 2016 introduced the Deep Resource Manage-
ment with Reinforcement Learning (DeepRM) — the multi-resource cluster
scheduler for the resource management systems — to solve the problem
Rm | online rj |

∑
j∈J Sj = Cj−rj

pj
: considering a cluster with m resource

types and jobs arriving in an online fashion, a resource demand of each job j
which is known upon arrival kj = (kj,1, · · · , kj,m), a job duration pj , and a
criteria of minimizing the average slowdown. Their method was tested on
instances lasting for 50 time steps t, with 80% of the jobs being short-term
jobs with a duration of 1t − 3t; 20% of the jobs are long-term jobs with a
duration of 10t− 15t. DeepRM, is an example solution that translates the
problem of packing tasks with multiple resource demands into a learning
problem. DeepRM performs comparably or better than standard heuristics
such as Shortest-Job-First (SJF). It learns strategies directly from experience,
such as favoring short jobs over long jobs and keeping some resources free
to service future arriving short jobs. The main assumptions of the model
are: 1) jobs arrive at the cluster in an online fashion, in discrete timesteps;
2) the scheduler chooses one or more of the waiting jobs to schedule at each
timestep; 3) no preemption is allowed; and, 4) the cluster is a single collection
of resources. The space state is represented in Fig. 2.3. The leftmost blocks
represent the current job allocation of the resources (each job of a separate
color), the job slots represent the awaiting jobs and their requirements and a
backlog is just a single number representing the number of jobs left beyondM
awaiting ones. The state representation is fixed so that it can be applied as an
input to the Neural Network (NN), meaning that M number of awaiting jobs
is fixed. It is important to note the trick they use to reduce the action space:
in the normal case, the action could possibly be generated for every subset
of awaiting jobs, which is a large number of 2M ; while, in their approach,
the agent is allowed to perform several actions during a single time step.
The required function is designed to guide the agent towards the preferable
objective, selected in advance.

Ye et al. [51] proposed a new approach of DRL in resource scheduling based on
the DeepRM scheduler, solving instances lasting for 50 time steps t, with 80%
of the jobs being short-term jobs with a duration of 1t−3t; 20% of the jobs are

11

2. Related work.....................................
long-term jobs with a duration of 10t− 15t. As mentioned before, one of the
main assumptions of the DeepRM scheduler is the online environment where
jobs arrive in a streaming fashion. The new approach proposed scheduling
techniques for both: 1) offline (DeepRM Off); and, 2) online environments
(DeepRM2). Two different objectives take place: the minimization of the
average slowdown and the minimization of the job completion time. The
state representation of the DeepRM2 coincides with the DeepRM, while the
DeepRM Off representation is different: opposite to the online learning here
we have got all the awaiting jobs from the start, so we have the job slots
amount equivalent to the number of jobs as well as the backlog information
that is missing, as it is shown in Fig. 2.4. The action space and the reward
are similar to the DeepRM. One more major difference with the DeepRM
approach is the usage of the Convolutional Neural Network (CNN) since the
state space is represented as a 2-dimensional lattice, which can be seen as
an image, and thus the characteristics of CNN can be leveraged. One more
difference is the usage of imitation learning for the CNN initialization.

More recently, Bouška et al. [9] proposed a data-driven algorithm that solves
the Single Machine Total Tardiness Problem (SMTTP). It leverages DL all-
throughout the execution (that is, the type 4 of the categorization by Bengio
et al. [7]) which can efficiently generalize information from the training phase
to instances of size up to 350 jobs, where it achieves an optimality gap of
about 0.5%.

2.3 Challenges

2.3.1 Feasibility

As noted by Bengio et al. [7], even though ML can be used to directly output
solutions to optimization problems, it would be more precise to say that the
algorithm is learning a heuristic: the learned algorithms do not usually come
with any guarantees in terms of optimality or feasibility. This can be the case
for any heuristic — and this issue can be mitigated by using the heuristic
within an exact optimization algorithm (such as Branch-and-Bound).

Finding the feasible solutions to a combinatorial optimization problem is not
an easy task (NP-hard for general MILP), but it is even more challenging
in ML, especially by using NNs: trained with gradient descent, NNs must
be designed carefully in order not to break the differentiability of the target
function, learned by a NN. For instance, the Pointer Network by Vinyals et al.
[49] is a complex architecture used to make a network output a permutation, a
constraint easy to satisfy when writing a classical combinatorial optimization
heuristic.

12

......................................2.3. Challenges
2.3.2 Modeling

Concerning modeling, Bengio et al. [7] remark that the problems studied
in combinatorial optimization are different from the ones currently being
addressed in ML, where most successful applications target natural signals.
The architectures used to learn good policies in combinatorial optimization
might be very different from what is currently used with DL.

2.3.3 Scaling

Bengio et al. [7] note that scaling to larger problems can be a challenge. If
a model trained on instances up to some size, say TSP up to size n = 50,
is evaluated on larger instances, say TSP of size n = 100, n = 500, etc, the
challenge exists in terms of generalization: papers tackling TSP through
ML and attempting to solve larger instances see degrading performance as
size increases much beyond the sizes seen during training [5, 12, 30, 49]. To
tackle this issue learning on larger instances would be an option, but this may
turn out to be a computational and generalizational issue. Except for very
simple ML models and strong assumptions about the data distribution, it is
impossible to know the model capacity and the architectural characteristics
required to capture the target distribution. It is also hard to predict the
sample complexity, i.e., the number of observations required for learning,
since one is unaware of the true data generating distribution.

Bengio et al. [7] suggest that learning should occur on a distribution small
enough that the policy could fully exploit the structure of the problem to
achieve generalization. Bengio et al. [7] believe that end-to-end machine learn-
ing approaches to combinatorial optimization can be improved by combining
them with current combinatorial optimization algorithms, to benefit from the
theoretical guarantees and SOTA algorithms already available.

2.3.4 Data Generation

Bengio et al. [7] remark that collecting instances of optimization problems
is a subtle task. Given an external process on which we observe instances
of an optimization problem, we can collect data to train some policy needed
for optimization, and expect the policy to generalize on future instances of
this application. A practical example would be a business that frequently
encounters optimization problems related to their activities, such as a delivery
company. In cases where we are not targeting a specific application for which
we would have historical data, proactively training a policy for problems that
we do not yet know of poses a complex question: we need to define over which
family of instances we want to generalize; even so, it remains a complex effort
to generate problems that capture the essence of such family of instances.
Smith-Miles and Bowly [43] propose a problem instance generating method.

13

14

Chapter 3

Background Theory

The following review of fundamentals of Machine Learning was gathered
mainly from the work by Goodfellow et al. [21].

3.1 Types of ML Tasks

ML tasks are usually described in terms of how the machine learning system
should process an example. An example is a collection of features that have
been quantitatively measured from some object or event that we want the
ML system to process. The ML tasks concerning this work are reviewed..Classification. In this type of task, the model is asked to specify to

which of the categories some input belongs. To solve this task, the
learning algorithm is usually asked to learn a function f : Rn 7−→
{1, · · · , k}. When y = f(x), the model assigns an input described by
vector x to a category identified by numeric code y..Regression. In this type of task, the model is asked to predict a
numerical value given some input. To solve this task, the learning
algorithm is asked to learn a function f : Rn 7−→ R. This type of task is
similar to classification, except that the format of output is different.. Structured output. Tasks involve any task where the output is a
vector (or other data structure containing multiple values) with important
relationships between the different elements. This is a broad category
and subsumes transcription and translation tasks, as well as many other
tasks.

3.2 Performance Measure

To evaluate the ability of an ML algorithm, we must design a quantitative
measure of its performance. Usually this performance measure is specific to

15

3. Background Theory
the task being carried out by the system. For tasks such as classification,
we often measure the accuracy of the model. Accuracy is the proportion
of examples for which the model produces the correct output. We can also
obtain equivalent information by measuring the error rate. The error rate
is the proportion of examples for which the model produces an incorrect
output. We often refer to the error rate as the expected 0-1 loss. The 0-1
loss on a particular example is 0 if it is correctly classified and 1 if it is not.
However, these measures suit for the classification tasks. For such tasks as ,for
example, regression, we must use performance metrics that give the model a
continuous-valued score for each example. The most common approach is to
report the average log-probability the model assigns to some examples.

The choice of performance measure may seem straightforward and objective,
but it is often difficult to choose a performance measure that corresponds
well to the desired behavior of the system.

3.3 ML Model Generalization and the
Bias-Variance Trade-Off

The central challenge in ML is generalization: the learned model must
perform well on new, previously unseen, inputs. We typically estimate the
generalization error of a ML model by measuring its performance on a test
set of samples that were collected separately from the training set.

The bias-variance trade-off was first formally introduced by Geman et al.
[19]. It refers to the fact that when trying to make a statistical prediction
(e.g., estimating a parameter of a distribution or fitting a function), there
is a trade-off between the accuracy of the prediction and its precision, or
equivalently between its bias and variance, resp. Suppose we are trying to
predict some target function f : Rn 7−→ R. Let y = f(x) , where (x, y) ∼ PD.
Let us define a dataset D as a collection of independent identically distributed
(iid) realizations of pairs (x, y) sampled from the real data distribution PD.
We use a dataset D = (xi, yi)n

i=1 ∼ PD to fit an estimator f̂D of the target f
using some statistical algorithm, which searches over some function class F
to find the best f̂D available in F .

For any data point (x, y), the bias B of the predictor’s function class F is
the difference between the expected value over dataset realizations D ∼ PD

with their corresponding predictor f̂D, of the predicted value f̂D(x) and the
true value at f(x):

B = EPD
[f̂D(x)]− f(x) (3.1)

For any data point (x, y), the variance V of the predictor’s function class F is
the expected difference between the predicted value of the predictor fitted on

16

.............................. 3.4. Overfitting and Underfitting

a particular dataset realization, f̂D(x), and the expected value over dataset
realizations D ∼ PD with their corresponding predictor f̂D, of the predicted
value:

V = EPD

[(
f̂D(x)− EPD

[f̂D(x)]
)2]

= EPD

[
f̂D(x)2 − 2 · f̂D(x) · EPD

[f̂D(x)] + EPD
[f̂D(x)]2

]
= EPD

[f̂PD
(x)2]− 2 · EPD

[f̂PD
(x)] · EPD

[f̂PD
(x)] + EPD

[f̂PD
(x)]2

= EPD
[f̂PD

(x)2]− 2 · EPD
[f̂PD

(x)]2 + EPD
[f̂PD

(x)]2

= EPD
[f̂PD

(x)2]− EPD
[f̂PD

(x)]2

(3.2)

A standard measure for the error in a prediction is the Mean Squared Error
(MSE) is

MSE = EPD
[(f̂D(x)− f(x))2] (3.3)

The MSE increases as the bias or variance increases. In fact, a well-known
result is that the MSE decomposes into a bias and variance term:

MSE = EPD
[(f̂D(x)− f(x))2]

= EPD

[
f̂D(x)2 − 2 · f̂D(x) · f(x) + f(x)2

]
= EPD

[f̂D(x)2]− 2 · EPD
[f̂D(x)] · f(x) + f(x)2]

= + EPD
[f̂D(x)]2 − EPD

[f̂D(x)]2

= EPD
[f̂D(x)2]− EPD

[f̂D(x)]2︸ ︷︷ ︸
V

+ (EPD
[f̂D(x)]− f(x))2︸ ︷︷ ︸

B2

= V +B2

(3.4)

For two function classes that have the same prediction error, if one function
class is more biased than the other, then we know the other must have
higher variance. Thus, to effectively use ML one tries to use a function class
that balances the bias-variance trade-off. Ideally, we would use the smallest
function class that can capture the target function.

3.4 Overfitting and Underfitting

The factors determining how well a ML algorithm will perform are its ability
to make the training error small and make the gap between training and
test error small. These two factors correspond to the two central challenges

17

3. Background Theory
of machine learning: underfitting and overfitting. Underfitting occurs when
the model is not able to obtain a sufficiently low error on the training set;
overfitting occurs when the gap between the training and test error is too large.
Note that this gap is representative of the generalization performance of the
model. We can control whether a model is more likely to overfit or underfit
by altering its capacity, which is its ability to fit a wide variety of functions.
One way to control the capacity of a learning algorithm is by choosing its
hypothesis space, the set of functions that the learning algorithm is allowed
to select as being the solution. ML algorithms will generally perform best
when their capacity is appropriate for the true complexity of the task and
the amount of training data they are provided with. The capacity of the
model directly affects its variance since the variance represents the amount of
variability in functions of the function class, or in other words is a measure
of the complexity or size of the function class.

Capacity is not only determined by the choice of model. The model specifies
which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective; this is called
the representational capacity of the model. Additional limitations, such
as the imperfection of the optimization algorithm, mean that the learning
algorithm’s effective capacity may be less than the representational capacity
of the model family.

3.5 Hyperparameters

Most ML algorithms have hyperparameters, settings that we can use to
control the algorithm’s behavior. Sometimes a parameter is chosen to be a
hyperparameter (i.e., that the learning algorithm does not learn) because the
parameter is difficult to optimize, or because it is not appropriate to learn it
on the training set. One of the exmaples is the learning rate. Learning rate
is a hyperparameter that controls how much we are adjusting the weights of
our network with respect the loss gradient. The lower the value, the slower
we travel along the downward slope. Another example is the model capacity.
As mentioned in the previous section, the model capacity directly affects
the model’s ability to overfit on the training data. Therefore, the bigger the
model capacity is, the more complicated function it is capable of learning
in a specific piece of data. This creates bigger variance. On the other hand,
too little model capacity leads to bigger bias and incapability of learning the
training data.

3.6 Recurrent Neural Networks

RNN serve for processing sequential data: it operates on a sequence that
contains vectors x(t) with the time step index t ranging from 1 to τ , where τ

18

.............................. 3.6. Recurrent Neural Networks

Figure 3.1: Diagram by Goodfellow et al. [21, see II.10]. RNNs that produce an
output at each time step and have recurrent connections between hidden units.

is length of the sequence. The main idea of the RNN is parameter sharing,
which makes it possible to extend the same model and apply it to inputs of
varying lengths. It is able to learn a fixed size representation for any sequence
length and generalize across various lengths. Each RNN unit at each time
step t has a hidden state. The current time step’s hidden state is calculated
using information of the previous time step’s hidden state and the current
input. This process helps to retain information on what the model saw in
the previous time step when processing the current time steps information.
Many RNNs use Eq. 3.5 — or a similar equation — to define the values of
their hidden state.

h(t) = f(h(t−1), x(t); θ) (3.5)

The network typically learns to use h(t) as a kind of lossy summary of the
task-relevant aspects of the past sequence of inputs up to t. This summary
is, in general, necessarily lossy, since it maps an arbitrary length sequence
(x(1), · · · , x(t−1), x(t)) to a fixed length vector xh. Depending on the training
criterion, this summary might selectively keep some aspects of the past
sequence with more precision than others. Some issues arise due to this
concerning long-term dependencies; these issues have been tackled by more
sophisticated models such as the Long Short-Term Memory (LSTM), and by
the development of so-called Attention Mechanisms, which will be presented
in the following sections.

Goodfellow et al. [21] bring some important use cases for RNNs:.Many-to-Many Hidden-to-Hidden. In this use case, the RNN pro-
duces an output at each time step and has recurrent connections between
hidden units and produces an output at each time step. In the Fig.
3.1 we can see the computational graph to compute the training loss
of an RNN that maps an input sequence of x = (x(1), · · · , x(t)) values
to a corresponding sequence of o = (o(1), · · · , o(t)) values. A loss L(t)

19

3. Background Theory

Figure 3.2: Diagram by Goodfellow et al. [21, see II.10]. RNNs that produce an
output at each time step and have recurrent connections only from the output
at one time step to the hidden units at the next time step.

measures how far each o(t) is from the corresponding training target y(t).
The RNN has an input to hidden connections parametrized by a weight
matrix U , hidden-to-hidden recurrent connections parametrized by a
weight matrix W , and hidden-to-output connections parametrized by a
weight matrix V ..Many-to-Many Output-to-Hidden. In this use case, the RNN pro-
duces an output at each time step and has recurrent connections only
from the output at one time step to the hidden units at the next time step.
In the Fig. 3.2 we can see an RNN whose only recurrence is the feedback
connection from the output to the hidden layer. At each time step t, the
input is x(t), the hidden layer activations are h(t), the outputs are o(t),
the targets are y(t) and the loss is L(t). To the left, the circuit diagram;
to the right, the unfolded computational graph. Such an RNN is less
powerful (i.e., can express a smaller set of functions) than those in the
family represented by Fig. 3.1. The RNN in Fig. 3.1 can choose to put
any information it wants about the past into its hidden representation
h(t) and transmit h(t) to the future. The RNN in this figure is trained to
put a specific output value into o(t), and o(t) is the only information it
is allowed to send to the future. There are no direct connections from
h(t) going forward. The previous h(t) is connected to the present only
indirectly, via the predictions it was used to produce. Unless o(t) is very
high-dimensional and rich, it will usually lack important information
from the past. This makes the RNN in this figure less powerful, but it
may be easier to train because each time step can be trained in isolation
from the others, allowing greater parallelization during training..Many-to-One Hidden-to-Hidden This use case refers to RNNs with
recurrent connections between hidden units, that read an entire sequence
and then produce a single output. In the Fig. 3.3 we can see the
time-unfolded RNN with a single output at the end of the sequence.
Such a network can be used to summarize a sequence and produce a

20

.............................. 3.6. Recurrent Neural Networks

Figure 3.3: Diagram and caption by Goodfellow et al. [21, see II.10]. Time-
unfolded RNN with a single output at the end of the sequence.

fixed-size representation used as input for further processing. There
might be a target right at the end (as depicted here) or the gradient
on the output o(t) can be obtained by back-propagating from further
downstream modules.

The forward message for the case of the network from the Fig. 3.1 is shown
in the following equations. The activation function is chosen to be the
hyperbolic tangent. We assume that the output is discrete, as if the RNN
is used to predict words from a dictionary. A natural way to represent
discrete variables is to regard the output logits o as giving the unnormalized
log-probabilities of each possible value of the discrete variable. We can then
apply the Softmax operation as a post-processing step to obtain a vector ŷ
of normalized probabilities over the output that we can use for calculating the
loss function. Forward propagation begins with a specification of the initial
state h(0). Then, for each time step t ∈ {1, · · · , τ}, we apply the update
equations.

3.6.1 Teacher Forcing

Models that have recurrent connections from their outputs leading back into
the model may be trained with teacher forcing. Teacher forcing is a procedure
that emerges from the maximum likelihood criterion, in which during training
the model receives the ground truth output y(t) as input at time t+ 1. We
can see this by examining a sequence with two time steps. The conditional
maximum likelihood criterion is:

log p
(
y(1), y(2) ∣∣ x(1), x(2)

)
= log p

(
y(2) ∣∣ y(1), x(1), x(2)

)
+ log p

(
y(1) ∣∣ x(1), x(2)

)
(3.6)

In this example, we see that at time t = 2, the model is trained to maximize
the conditional probability of y(2) given both the x sequence so far and the

21

3. Background Theory
previous y value from the training set. Maximum likelihood thus specifies
that during training, rather than feeding the model’s own output back into
itself, these connections should be fed with the target values specifying what
the correct output should be. Teacher forcing was originally motivated for
allowing us to avoid Back-Propagation Through Time (BPTT) in models
that lack hidden-to-hidden connections. As soon as the hidden units become
a function of earlier time steps, however, the BPTT algorithm is necessary.

Definition 3.1 (Teacher Forcing). Derived from the maximum likelihood
criterion, the teacher forcing method replaces the input at time t+ 1 with
the ground truth instead of the output from time t given by the model.

The teacher forcing method possesses a disadvantage, namely, that the fed-
back inputs that the network sees during training could be quite different
from the kind of inputs that it will see at test time. One way to mitigate
this problem is to train with both teacher-forced inputs and free-running
inputs. Bengio et al. [6] suggest an approach to mitigate the gap between the
inputs seen at training time and the inputs seen at test time, which randomly
chooses to use generated values or actual data values as input during training.

3.6.2 Gated RNN and The Long Short-Term Memory

One of the most effective sequence models used in practical applications are
called gated RNNs. The gated RNNs introduce the forget mechanism, which
allows the network to set the old state to zero. This leads to the idea of
creating paths through time that have derivatives that neither vanish nor
explode.

One of the most successful realizations of the gated RNNs is LSTM. A crucial
addition by Gers et al. [20] has been to make the weight on this self-loop
conditioned on the context, rather than fixed. By making the weight of
this self-loop gated (controlled by another hidden unit), the time scale of
integration can be changed dynamically. In this case, we mean that even for
an LSTM with fixed parameters, the time scale of integration can change
based on the input sequence. The control unit then learns when to forget
fully or partially the previous information based on the current sequence.
Therefore, once the particular information has been used, the LSTM are able
to forget the old state.

The LSTM block diagram is illustrated in Fig. 3.4; it shows a block diagram
of the LSTM network cell. Cells are connected recurrently to each other,
replacing the usual hidden units of ordinary recurrent networks. An input
feature is computed with a regular artificial neuron unit. Its value can be
accumulated into the state if the sigmoidal input gate allows it. The state
unit has a linear self-loop whose weight is controlled by the forget gate. The
output of the cell can be shut off by the output gate. All the gating units
have a sigmoid nonlinearity, while the input unit can have any squashing

22

............................. 3.7. Sequence-to-Sequence Models

Figure 3.4: Diagram and caption by Goodfellow et al. [21, see II.10]. Block
diagram of the LSTM network cell.

nonlinearity. The state unit can also be used as an extra input to the gating
units. The black square indicates a delay of a single time step.

The LSTM has been found extremely successful in many applications, such
as unconstrained handwriting recognition, speech recognition, handwriting
generation, machine translation and image captioning.

3.7 Sequence-to-Sequence Models

The Sequence-to-Sequence models serve to map an input sequence to an
output sequence which is not necessarily of the same length. The input can
be expressed as a vector or sequence of vectors that summarize the sequence
x = (x(1), · · · , x(nx)).

The simplest RNN architecture for mapping a variable-length sequence to
another variable-length sequence was first proposed by Cho et al. [10] and
shortly after by Sutskever et al. [44], who independently developed that
architecture and were the first to obtain state-of-the-art translation using
this approach. The former system is based on scoring proposals generated by
another machine translation system, while the latter uses a standalone recur-
rent network to generate the translations. These authors respectively called
this architecture, illustrated in Fig. 3.5, the encoder-decoder or sequence-
to-sequence architecture. The idea is very simple: 1) an encoder or reader
or input RNN processes the input sequence. The encoder emits the context
C, usually as a simple function of its final hidden state; 2) a decoder or
writer or output RNN is conditioned on that fixed-length vector to gener-
ate the output sequence y = (y(1), · · · , y(ny)). In a sequence-to-sequence
architecture, the two RNN are trained jointly to maximize the average of

23

3. Background Theory

Figure 3.5: Diagram and caption by Goodfellow et al. [21, see II.10]. Example
of an encoder-decoder or sequence-to-sequence RNN architecture.

logP(y(1), · · · , y(ny) | x(1), · · · , x(nx)) over all the pairs of x and y sequences
in the training set. The last state hnx of the encoder RNN is typically used
as a representation C of the input sequence that is provided as input to the
decoder RNN.

We can see in Fig. 3.5 an example of an encoder-decoder or sequence-to-
sequence RNN architecture, for learning to generate an output sequence
(y(1), · · · , y(ny)) given an input sequence. It is composed of an encoder RNN
that reads the input sequence (x(1), · · · , x(nx)) and a decoder RNN that
generates the output sequence (or computes the probability of a given output
sequence). The final hidden state of the encoder RNN is used to compute a
generally fixed-size context variable C which represents a semantic summary
of the input sequence and is given as input to the decoder RNN.

3.8 Attention Mechanisms

Attention mechanism was firstly introduced for the RNN-based encoder-
decoder architecture by [2]. One of the biggest problems of RNN-based
encoder-decoder architecture is the processing of long sequences. As it
was mentioned before, the context C, emitted by the Encoder, summarizes
the whole sequence. When processing a long sequence, the information
becomes hard to capture within a single fixed-length Encoder state. Attention
mechanism addresses the long-range dependencies limitation of RNNs. It
learns to emphasize only to the parts of the input sequence that are relevant
to the current prediction. Instead of a single last hidden state, the Encoder
emits a hidden state vector at each time step. Therefore, the result context
collects all the hidden states of the input sequence.

Attention mechanisms map each query to a so-called attention value, perform-
ing a convex combination of the existing values, where the weight assigned

24

................................ 3.8. Attention Mechanisms

to each is obtained by a similarity function comparing the query with the
corresponding key. We can think of it as a form of soft-retrieval; we have: 1)
a query q for which we want to retrieve its value v; and, 2) keys k associated
to values, to which we will match the query:

y = Attention(q,K, V) =
∑

i

Similarity(q, ki) · vi (3.7)

The similarity function expresses the measure of alignment between the query
and the key. It depends on the attention mechanism chosen.

We do not assume, that the initial representations of the keys and queries
can be directly compared, so we desire to learn representation spaces suitable
for comparing the queries and keys. Similarly, we wish to impart more power
unto the attention mechanism by allowing it to project the values into a
space that is more suitable to produce the final values obtained by attention.
Therefore we learn the projections WQ, W V and WK .

Considering X ∈ Rn×dx , Y ∈ Rn×dy , Z ∈ Rn×dz , we let WQ ∈ Rdx×dk ,
WK ∈ Rdy×dk , W V ∈ Rdz×dv . Then,

Q = X ·WQ, K = Y ·WK , V = Z ·W V (3.8)

where Q,K ∈ Rn×dk , V ∈ Rn×dv .

There are various types of attention mechanism, which are outlined in the
following subsections.

3.8.1 Self-Attention

Relates elements from an input set between each other. In self-attention, the
queries, the keys and the values, all come from the same source. Considering
a group of n input vectors X = (x1, · · · , xn), we obtain with self-attention
Y = (y1, · · · , yn), where:

yi = Attention(xi, X,X) =
∑

j

Similarity(xi, xj) · xj (3.9)

Remark 3.2. The resulting self-attention is permutation equivariant:

Attention(π(X)) = π(Attention(X))

Self-attention has been used successfully in a variety of tasks including reading
comprehension, abstractive summarization, textual entailment and learning
task-independent sentence representations.

25

3. Background Theory
3.8.2 Scaled Dot-Product Attention

The similarity function of choice by attention mechanisms is the dot product,
followed by the Softmax function (used to normalize the weights into prob-
abilistic form). Considering previously defined cardinalities, the attention
values are obtained as follows:

Attention(Q,K, V) = Softmaxk

(
Q ·KT
√
dk

)
· V (3.10)

3.8.3 Multi-Head Attention

Multi-Head Attention (MHA) allows the model to jointly attend to informa-
tion from different representation subspaces: instead of performing a single
attention function with dk-dimensional queries and keys and dv-dimensional
values, the queries, keys and values are projected with h different learned
projections, each with size dk

h for the queries and the keys, and size dv
h for

the values. Attention is performed in parallel across the h heads, yielding dv
h -

dimensional output values. These are concatenated and once again projected
with learned projection WO, resulting in the final dv-dimensional values. Let
Oi = Attention(X ·WQ

i , Y ·WK
i , Z ·W V

i), then [47]:

MHA(X,Y, Z) = Concatenate[O1, · · · , Oh] ·WO (3.11)

3.8.4 Bahdanau Attention

Proposed by Bahdanau et al. [2], this was the original method that started the
attention mechanisms revolution. In previous encoder-decoder architectures
for Sequence-to-Sequence (Seq2Seq) tasks, the decoder would use a context
vector c obtained from the encoder which represented the whole sequence.
This had the limitation that the encoder had to embed all the relevant
information corresponding to the input sequence into the same fixed-length
vector, to be used by the decoder to generate the output sequence. Bahdanau
attention changed this, allowing the context vector to be different for each
prediction of the decoder, which has the benefit of being able to emphasize
different kinds of information from the input sequence, at each step.

Let us now revisit the original formulation by Bahdanau et al. [2] for Neural
Machine Translation (NMT).

26

................................ 3.8. Attention Mechanisms

Main Idea

When using the same context vector c across the whole prediction, the decoder
defines a probability over the translation (ŷ1, · · · , ŷTy) by decomposing the
joint probability into the ordered conditionals:

p(ŷ1, · · · , ŷTy) =
T∏

t=1
p(ŷt | {ŷ1, · · · , ŷt−1}, c) (3.12)

where an RNN models each conditional probability as:

p(ŷt | {ŷ1, · · · , ŷt−1}, c) = g(ŷt−1, st, c), (3.13)

where g is a nonlinear function that outputs the probability of ŷt, st is the
hidden state of the RNN, and c = q({h1, · · · , hTx}) is a vector generated from
the sequence of the hidden states given by the encoder when processing the
input (x1, · · · , xTx). Now, ht = f(xt, ht−1), where f is an RNN-based model
and q are some nonlinear functions. Previous work by Sutskever et al. [45]
used an LSTM as f and c = hT = q({h1, · · · , hTx}).

In the work proposed by Bahdanau et al. [2], the conditional probability is
defined as:

p(ŷi | ŷ1, · · · , ŷi−1, x1, · · · , xTx) = g(ŷi−1, si, ci), (3.14)

where si is an RNN hidden state for time i, computed by si = f(si−1, ŷi−1, ci).
Note that unlike the previously described encoder-decoder approach, here
the probability is conditioned on a distinct context vector ci for each output
element ŷi. The context vector ci depends on a sequence of hidden states
H = (h1, · · · , hTx), each of which is obtained by the encoder, considering the
sequence (or part of it) and a particular element xi.

If the encoder uses a model that looks at the whole sequence before generating
the hidden states for each element (such as the Bidirectional Recurrent Neural
Network (Bidirectional RNN)), then each hidden state hi contains information
about the whole input sequence, with a strong focus on the parts surrounding
the i-th element. On the other hand, if the encoder uses a simple RNN model,
each hidden state will contain information only about the previous elements
in the sequence.

In this model, the attention weights are given by the Similarity(si−1, hj),
which is the probability that the output element ŷi is aligned to a source
element xj ; then, the i-th context vector ci is the expected hidden state
over all the hidden states where the probabilities correspond to the attention
weights. Intuitively, this implements an attention mechanism in the decoder.
The decoder decides parts of the source sequence to pay attention to. By

27

3. Background Theory
letting the decoder have an attention mechanism, we relieve the encoder from
the burden of having to encode all information in the source sequence into
a fixed-length vector, and the information can be spread throughout the
sequence of hidden states, which can be selectively retrieved by the decoder
accordingly.

Formulation

Following the previous definitions of attention already given, we present the
formulation of Bahdanau attention under the same notation: the query is the
previous state of the decoder si−1, and both, the keys and the values, are
the set of hidden states of the encoder H (i.e., each value associated to a key
is the key itself). The context vector is computed as a weighted sum of the
hidden states from the encoder:

ci = Attention(si−1, H,H) =
Tx∑

j=1
Similarity(si−1, hj) · hj (3.15)

where

Similarity(si−1, hj) =
exp

(
AlignmentScores(si−1, hj)

)
∑Tx

k=1 exp
(
AlignmentScores(si−1, hk)

) (3.16)

and

AlignmentScores(si−1, hj) = tanh
(
si−1 ·W s + hj ·W h

)
· wT (3.17)

In the expressions, si−1 ∈ R1×ds , W s ∈ Rds×dk , hj ∈ R1×dh , W h ∈ Rdh×dk ,
w ∈ R1×dk ; AlignmentScores(si−1, hj) indicate how well the inputs around
position j, and the output at position i match, and this is normalized with
Softmax in order to produce the Similarity. The context vector is utilized
by concatenating it to the embedding of the input word of the decoder:

ỹi−1 = Cat[ci; ŷi−1] (3.18)

Finally, ỹi−1 is fed together with si−1 to the decoder RNN to produce the
output oi and hidden state si. Let W y ∈ Rdo×|Y |; the output oi is fed to a
classifier:

p(y | ŷ1, · · · , ŷi−1, x) = Softmaxy(oi ·W y) (3.19)

ŷi = arg max
y

p(y | ŷ1, · · · , ŷi−1, x) (3.20)

28

................................ 3.8. Attention Mechanisms

3.8.5 Luong Attention

Luong et al. [34] propose several alignment scores, together with a local
attention mechanism that selectively focuses only on some of the elements of
the input sequence, in an attempt to improve the computational performance
of the model. They refer to the classical attention mechanism as global
attention mechanism. We review their global attention mechanism, and their
proposed alignment scores.

Luong attention utilizes the context vector differently than Bahdanau atten-
tion: rather than as an input to the decoder, it transforms the output oi of
the decoder with the attention mechanism.

õi = tanh (Cat[ci; oi] ·W o) (3.21)

Similar to Bahdanau attention, the final classifier is defined as:

p(y | ŷ1, · · · , ŷi−1, x) = Softmaxy(õi ·W y) (3.22)

Just as seen previously, the context vector ci is given by the resulting attention
values. In order to obtain ci, the preliminary output oi produced by the
decoder RNN is used as follows:

ci = Attention(oi, H,H) =
Tx∑

j=1
Similarity(oi, hj) · hj (3.23)

where

Similarity(oi, hj) =
exp

(
AlignmentScores(oi, hj)

)
∑Tx

k=1 exp
(
AlignmentScores(oi, hk)

) (3.24)

and

AlignmentScores(oi, hj) =

oi · hT

j Dot

oi ·W g · hT
j General

tanh (Cat[oi; hj] ·W c) · wT Concat

(3.25)

where oi ∈ R1×do , hj ∈ R1×dh , W g ∈ Rdo×dh , W c ∈ Rdo+dh×dk , w ∈ R1×dk .

29

3. Background Theory
3.9 Transformers

Transformer is a model architecture eschewing recurrence and instead relying
entirely on an attention mechanism to draw global dependencies between
input and output.

The RNN has particular disadvantages in comparison to the Transformer
architecture. Among them are:. (Long-range dependencies) Usually solved using attention mechanisms.. (Gradient vanishing and explosion) When the gradient is passed back

through many time steps, it tends to grow or vanish.. (Large number of training steps) RNNs need to be unrolled for as many
steps as corresponds in the sequence. The optimization tends to be
difficult because of the parameter sharing in the unfolded network.. (Recurrence prevents parallel computation) Due to the sequential nature
of RNNs.

Properties of the Transformer :. (Facilitate long-range dependencies) Connections can be drawn among
any parts of the sequence. Long-range dependencies have the same prior
likelihood of being used than short-range dependencies.. (No gradient vanishing and explosion) Instead of having a number of
computations that grows linearly with the length of the sequence, we
do the computation for the entire sequence simultaneously, passing it
through a constant amount of layers.. (Fewer training steps) Easier to optimize.. (No recurrence) Faster training due to parallelization is possible using
Teacher-Forcing (note that decoder inference still needs to be sequential).

3.9.1 Architecture of the Transformer

Designed for machine translation as an encoder-decoder architecture. In
contrast to RNN-based models in which sentences are processed word by
word, the Transformer Encoder processes all words in parallel.

The Transformer Encoder consists of MHA, Layer Normalization and a Feed-
Forward Neural Network (FFNN). The input to the encoder is a vector of
word embeddings representing the input sentence. Since we wish to treat the
input as a sequence rather than a set, we use a Positional Encoder to inject a
value representing the position of the word in the sentence. Then, the MHA
will compute the attention between all pairs of embeddings, producing for
each word a better embedding containing additional relational information.

30

.....................................3.9. Transformers

Figure 3.6: Transformer model by Vaswani et al. [48]

The Transformer Encoder can be stacked: the first layer combines words with
words, the second layer combines pairs with pairs, etc. Following the MHA is
an Add&Norm layer, which passes a skip connection preceding MHA, and
applies Layer Normalization by Ba et al. [1]. This is followed by a FFNN,
which is again followed by an Add&Norm layer. The output of the encoder is
a set of embeddings — one per word — each capturing the information of the
original word embedding along with the attention given to the other words.

The Transformer Decoder is tasked to output a sequence of labels corre-
sponding to translated words in the target dictionary. The decoder also
uses a Positional Encoder at its input and can be stacked multiple times.
In the Transformer Decoder we have a masked MHA, which performs self-
attention on the embeddings of the target words at the input when applying
the Teacher-Forcing training strategy. When generating the word ŷk during
training, the target words preceding in position y1, · · · , yk−1, are used as
input instead of the generated words ŷ1, · · · , ŷk−1; this makes training easier,
and allows us to parallelize decoding for training. The mask restricts the
attention of the decoder to the target words preceding the current target:

MaskedAttn(Q,K, V) = Softmax

(
Q ·KT +M√

dk

)
· V (3.26)

where M is a mask matrix filled with 0 and −∞, ensuring the probability
of masked elements will be zero after applying the Softmax activation, and
the distribution will be proper (adding up to 1). Then, another MHA block
follows, which associates translated words to original input words. This is
followed by a FFNN. Then the output of the Transformer Decoder is fed into
a classifier which outputs a distribution over words in the target dictionary.

31

32

Chapter 4

Proposed Methods

Within this thesis, two DL approaches for solving the 1 | rj |
∑

j∈J Uj are
introduced. Both approaches try to predict whether or not a job is tardy
in an optimal solution. The choice of the network architecture is motivated
by the analogy between scheduling and Natural Language Processing (NLP)
problems. In this case, a schedule can be seen as a sentence to be processed
within an NLP task, where the vector representation concerning each job
(release date, processing time, due date) is analogous to a word. The first
approach uses an LSTM-based Encoder-Decoder architecture with attention
mechanisms; in the second approach, a Transformer-based architecture is
used.

The main components of the proposed methods are explained in the follow-
ing sections, namely: 1) a data generation method by means of which we
implicitly select a target distribution to be learned; 2) several normalization
approaches that standardize the input to a specific range; 3) the proposed
models for tardiness prediction explained in detail; 4) integration of the
tardiness prediction models with a Constraint Programming (CP) solver, in
order to produce the final schedules; 6) performance measures by means of
which we can assess the effectiveness of the proposed method.

4.1 Data Generation

The data generation method selects a target distribution that we sample to
produce the training, validation and testing data. The target distribution
provides a characterization of scheduling problems for which the models are
optimized. Deviations from the target distribution will result in a degraded
performance.

The data generation method utilized is described in the work by Valente
and Alves [46]. Let us consider J to be the set of all jobs in a scheduling
instance, and let each job be j ∈ J . A set of problems of sizes {5, · · · , 160}
was randomly generated in the following way: for each job j an integer

33

4. Proposed Methods
processing time pj was sampled from the uniform distribution Unif(1, 10).
For each job j, an integer release date rj was sampled from the uniform
distribution Unif(0, α ·

∑
j∈J pj) where α was set at 0.25, 0.50 and 0.75.

Instead of determining due dates directly, the slack times between a job’s due
date and its earliest possible completion time were generated. For each job
j, an integer due date slack sd

j was sampled from the uniform distribution
Unif(0, β ·

∑
j∈J pj). The due date slack range β was set at 0.10, 0.25 and

0.50. The due date dj of j was then set equal to dj = (rj + pj) + sd
j .

The solutions of the generated instances were produced by two Integer Linear
Programming (ILP)s, which are designed to solve two corresponding criteria.
The first ILP solves the standard problem of 1 | rj |

∑
j∈J Uj for the purpose

of obtaining the optimal value of the objective function. The second ILP
solves the problem 1 | rj |

∑
j∈J Uj , which searches for the optimal solution

that minimizes the difference between the release dates and the start times of
each job. The purpose of this two-fold process is to characterize the solutions
guiding the learning of the model: since the model is able to predict only one
optimal solution per instance, the data contains only one class of optimal
solutions.

Let us consider T to be the set of available time units on the resource; rj ,
the release date of the job j; pj , the processing time of the job j; dj , the due
date of the job j. Let us define the indicator variable to be optimized:

xjt =
{

1 if job j starts at the time step t,
0 otherwise.

Finally, the variable OptV al is set as the optimal value of the objective
function of the first ILP. In addition, is used as a constraint in the second
ILP, so that the solver searches for a new solution only in the space of optimal
solutions.

The first ILP is described in the following lines:

minimize
{∑

j∈J

∑
t∈T : t>dj−pj

xjt

}
−→ OptV al

subject to xjt = 0 ∀j ∈ J, t ∈ T : t < rj∑
j∈J

∑
t′∈[t−pj+1, t]

xjt′ ≤ 1 ∀t ∈ T∑
t∈T

xjt ≥ 1 ∀j ∈ J

The seconds ILP is described in the following lines:

34

...................... 4.2. Normalization of the Input to the NN Models

minimize
∑
j∈J

∑
t∈T

{t · xjt − rj}

subject to
∑
j∈J

∑
t∈T : t>dj−pj

xjt = OptV al

xjt = 0 ∀j ∈ J, t ∈ T : t < rj∑
j∈J

∑
t′∈[t−pj+1, t]

xjt′ ≤ 1 ∀t ∈ T∑
t∈T

xjt ≥ 1 ∀j ∈ J

4.2 Normalization of the Input to the NN Models

The input to the NN is normalized. The reason for it is that we’ll generally
have different scales for each of the input features in the dataset. This
situation could influence the final results for some of the inputs, with an
imbalance not due to the intrinsic nature of the data but simply to their
original measurement scales. Normalizing all features in the same range
avoids this type of problem.

The normalizations considered are the instance-wise scaling normalizations
with scalar multiplier 1

k , which scales in the same way all release dates,
processing times and due dates pertaining to the corresponding instance.
Thus, k is the normalization factor scaling x-axis of the schedule. In this
work we assume several normalization factors, that are defined as:

kmrsp , max
j∈J : rj

r +
∑

j∈J : pj

p

ksp ,
∑

j∈J : pj

p

kmspmd , max
{ ∑

j∈J : pj

p, max
j∈J : rj

d

}

kmd , max
j∈J : rj

d

The impact of different normalization factors is evaluated within the next
chapter.

35

4. Proposed Methods
4.3 Proposed Models for Tardiness Prediction

4.3.1 Definitions

The following definitions are used in the description of both proposed NN
models.

Let the dataset D = (x(i),y(i))n

i=1 ∼ PD be a collection of iid realizations of
pairs (x,y) sampled from the real data distribution PD. Let x = (x1, · · · , xn),
let Jx be the job indeces for instance (x,y), and let xj , {(rj , pj , dj)}
represent a job j, where rj , pj , dj are the release date, the processing time
and the due date of the job, respectively.

Let o = (o1, · · · , on), and let oj be a binary indicator whether job j is tardy
in the optimal solution, defined as:

oj ,

{
1 if job j is tardy in the optimal solution
0 otherwise

Let e = (e1, · · · , en), and let ej be the predicted probability of a job j of
being tardy in the optimal solution. Furthermore, we define v being the
predicted amount of tardy jobs in the optimal solution.

Then, the DL-based model is defined in equation 4.1, with Θ = (θe, θv, θshared),
where θshared represents common parameters, and θe, θv represent specific
parameters corresponding to tardiness prediction and amount of tardy jobs
prediction, respectively; n is the amount of jobs in the instance. The idea of
both proposed methods is based on estimating the following two functions:

fe(x1, x2, · · · , xn; θe, θshared) = (e1, e2, · · · , en) ≈ P(oj = 1 | x; Θ)n
j=1

fv(x1, x2, · · · , xn; θv, θshared) = v ≈
∑
j∈J

oj
(4.1)

4.3.2 Model 1: Structured Tardiness Probability P(o | x; Θ)
Using the LSTM-based Sequence-to-Sequence Model

The first NN model is based on the Encoder-Decoder architecture, extended
with the Luong attention mechanism.

The architecture of the NN is represented in Fig. 4.1.

The Encoder accepts the sequence of jobs (x1, x2, · · · , xn) in EDD order. It
transforms the sequence to the latent space, producing the hidden states
which are then passed to the Decoder.

36

........................ 4.3. Proposed Models for Tardiness Prediction

The Decoder accepts the set of the hidden states from the Encoder and
generates the probability of tardiness for each job at each time step t. The
probability is then passed together with the Decoder ’s hidden state back
to the Decoder in the next time step. After n time steps the Decoder-loop
terminates as it has processed all the n jobs in the sequence.

The Regressor is used to predict the amount of tardy jobs in the instance. It
is directly connected to the Encoder, accepting the last hidden state as input
features. The Regressor contains a linear layer and a Rectified Linear Unit
(ReLU).

The loss function is a multi-objective criteria: 1) for the tardiness prediction
loss function defined in equation 4.2, we use the weighted variant of Binary
Cross Entropy (BCE) loss in order to address the issue of imbalance among
tardy and not tardy targets in the training data; 2) for the value prediction
loss function defined in equation 4.3, we use the Mean Absolute Error (MAE),
as it is the preferred criterion for regression tasks over integer targets. The
loss function looks in the following way:

`BCE ,
1
|D|

∑
(x,y)∈D

1
|Jx|

∑
j∈Jx

{
w 0

1
· yj · log ŷj + (1− yj) · log (1− ŷj)

}

w 0
1
,
|{(x,y) ∈ D : yj = 0}|
|{(x,y) ∈ D : yj = 1}|

ŷj =fe(x; θe, θshared)j

(4.2)

`MAE ,
1
|D|

∑
(x,y)∈D

1
|Jx|

∑
j∈Jx

|yj − ŷj |

ŷj = fv(x; θv, θshared)j

(4.3)

` , α · `BCE + β · `MAE (4.4)

The architecture is represented in Fig. 4.1.

The tardiness assignment is done in the following way: we take predicted by
the Regressor amount of tardy jobs with the highest probability ej of being
tardy and set them as tardy, so the remaining jobs are set as early.

During this research one more LSTM-based Sequence-to-Sequence Model
approach was examined. The model was considering several optimal solutions
for labelling an instance. The preliminary results were promising since the
model could find a way to generalize in an easier way by combining convenient
optimal solutions from each instance. The main disadvantage and the reason

37

4. Proposed Methods

Figure 4.1: LSTM-based Encoder-Decoder model architecture.

why this was not explored further is due to the time consumption of generating
all the optimal solutions.

The second proposed approach is using the Transformer architecture and it
is fully based on the attention mechanism.

4.3.3 Model 2: Structured Tardiness Probability P(o | x; Θ)
Using the Transformer-based Model

The architecture is used to give a structured prediction of tardiness to the
sequence of jobs (x1, x2, · · · , xn), defining the instance of size n.

The model architecture is represented in Fig. 4.2. It includes the Trans-
former Encoder , a Classifier and a Regressor. The Transformer Encoder
outputs the features for each job, which are passed to the Classifier to get
the final probability for each job. The Regressor takes the Transformer
Encoder features and predicts the proportion of jobs in the sequence that are
tardy, |{j∈J :oj=1}|

|J | . While the Regressor outputs directly the proportion just
described, the tardiness Classifier outputs a feature vector. This is done in
favor of the BCE with logits loss, which together with the feature vector takes
the dataset statistics in the input. This loss is numerically more stable than
the standard BCE loss since it takes into account the fact, that the amount
of the tardy and non-tardy jobs across the training dataset is uneven. The
target loss function is the combination of two, as in the LSTM-based Seq2Seq

38

........................ 4.3. Proposed Models for Tardiness Prediction

Figure 4.2: Transformer-based model architecture.

model. The MAE loss is defined below; the rest of definitions pertaining to
the loss function are identical to those in the previous model.

`MAE ,
1
|D|

∑
(x,y)∈D

1
|Jx|

∑
j∈Jx

|yj − ŷj |

ŷj = |Jx| · fv(x; θv, θshared)j

(4.5)

The architecture is represented in Fig. 4.1.

The tardiness assignment is done in the following way: we take v jobs with
the highest probability of being tardy and set them as tardy, so the remaining
jobs are set as early.

The standard Transformer architecture also includes the Positional Encoder.
It is not used in this work, since in our problem, the order of the input
sequence can be considered as not carrying essential information (in contrast
to NLP tasks). That is, there might exist such an ordering (e.g. based on the
EDD dispatching rule), but we don’t know for sure. Therefore, liberating the
model from this assumption could have a positive effect in its performance.

39

4. Proposed Methods
In consequence, we proceed to adopt an order-invariant formulation of the
Transformer Encoder.

The Transformer Decoder is not used in the current approach for two reasons.
The first one is the performance issue: in both, inference and training, the
decoder assumes a sequential processing of its input. It adduces a linear
computational complexity growth O(n) with respect to the size of the instance
n = |J |. Even though the issue during training can be circumvented using
Teacher-Forcing in the Transformer Decoder, it remains a problem at inference
time. The second reason is that the Encoder already takes into account all
the jobs in the sequence to extract the features needed for the prediction.
Therefore, it considers them all together and how they interact with each
other; in other words, the Transformer Encoder learns to compute features
for each job considering the whole structure of the problem. Nonetheless, to
investigate the complete Transformer (including the Transformer Decoder)
would be an interesting follow-up to this work.

The accuracy criteria of both models are described in the following section.

4.4 Accuracy Criteria of the NN

Both NN models have two evaluation criteria during validation phase:.Tardiness accuracy. The tardiness accuracy represents the percentage
of instances, where the tardiness assignment is predicted correctly. In
other words, the NN predicted correctly all the tardy jobs in the instance,
comparing to the tardiness in the label. This evaluation criterion in used
during validation phase to choose the best model..Value accuracy. The value accuracy represents the percentage of
instances, where the value of the objective function is predicted correctly,
comparing to the label. This evaluation criteria is used only for the
monitoring the progress of learning.

After the best trained model is obtained, we would like to construct the final
schedule. We use the prediction of the NN in the construction of the final
schedule with the help of Constraint Programming.

4.5 Construction of the Schedule with the CP

As a remainder, in the output of the NN we get the probabilities of tardiness for
each job. Then, we retrieve the set of early jobs using those probabilities and
the prediction of the objective value (see Section 4.3.1). For the construction
of the schedule, the initial problem 1 | rj |

∑
j∈J Uj is transformed into

1 | rj , d̃j |
∑

j∈J Uj , by setting the due dates of early jobs as their deadlines.

40

................................ 4.6. Implementation details

Then, the CP is searching for the feasible solution of the transformed problem.
It accepts at the input the release dates, the processing times and the
deadlines for each job. If the feasible solution is found, then the CP returns
the destination schedule and the problem is solved. If the solution is infeasible,
we remove the deadline of an early job with the lowest probability of being
early and pass the modified instance to the CP again. The procedure repeats
until the feasible solution is found. In the worst case - if the NN predicted all
the tardy jobs wrongly - we remove all the deadlines, so the feasible solution
will be found.

Let T = {(t1, t2, · · · , tn)} be flags representing the tardiness for each job. The
pseudo code of CP algorithm is in the picture below.

Algorithm 1 CP
1: function schedule(r, p, d, T)
2: interval← max(r) + sum(p)
3: mdl← CpoModel()
4: jobs← []
5: for all i in {0, · · · , length(T)} do
6: if T[i] = 0 then . If job at position i is early, set deadline
7: jobs.append(mdl.interval(

−−start = (r[i], interval), size = p[i], end = (r[i], d[i])
))

8: else
9: jobs.append(mdl.interval(start = (r[i], inteval), size = p[i]))

10: seq ← mdl.sequence_var([jobs])
11: mdl← mdl.no_overlap(seq)
12: schedule← mdl.solve()

The result schedule is evaluated in the following way: first, the number of
tardy jobs is calculated. Then, this number is compared with the number of
tardy jobs in the optimal solution using the gap error. Let y be the target
value and ŷ be the prediction. The gap error is calculated as gap = ŷ−y

ŷ .
The gap error is used for the performance evaluation in all the conducted
experiments, which are described in the following chapter.

4.6 Implementation details

The NN models and the data loaders were implemented in the PyTorch v1.8.1
framework. For the storage and retrieval of the data the Postgres database
was used. For the ILP Gurobi Optimizer v9.0.3 was used. For the CP,
the CPLEX v20.1 solver was used. The NN models were trained on Tesla
V100-PCIE-16GB GPU. The evaluation of the NN models was conducted on
macOS Mojave 10.14.6.

41

42

Chapter 5

Experiments

The following experiments describe the behaviour of the proposed solutions
on various settings of the models and the data, including: data normalization,
instance amounts, instance sizes and model architectures. Due to time
constraints, data generation was restricted, and the resulting dataset turned
out to be unbalanced, with less instances generated for bigger schedule sizes.
The approximate amount of instances generated per instance sizes are: 100000
instances were generated for instances containing 5-10 jobs, 13000 instances
were generated for instances containing 11-33 jobs, 7000 instances for instances
containing 34-40 jobs, 1200 instances for instances containing 45, 50, 55, and
60 jobs. The instances until size 100 were generated by increasing steps of 5,
and from 100 to 160 by increasing steps of 10; 600 instances were generated in
both cases. For every instance the data is divided into training, validation and
testing in proportion 60%, 20%, 20% respectively. Then, for every instance
size where generated equal amount of instances for every combination α and
β, where α ∈ {0.25, 0.5, 0.75} and β ∈ {0.1, 0.25, 0.75}.

All the experiments are conducted on instances where the tardiness of each
job is predicted by the selected model (either the Transformer-based model
or the LSTM-based model), and the output labels are sent to the CP solver,
effectively restricting the solution space available to the solver with the
deadlines for the jobs that are defined to be early by the predictive model
(i.e., those that were predicted not to be tardy in the optimal solution).

The plot of each of the following experiments shows (per instance size) the
median of the gap error, with its Median Absolute Deviation (MAD), and the
mean of the gap error. Note that the MAD is presented while the Standard
Deviation (SD) is not, since the MAD is robust to outliers while the SD is
strongly affected by them. Graphs with the SD were considered, but these
turned out to be cluttered and harder to visualize because of the big SD
values that resulted due to the outliers.

For each experiment there is a brief discussion of the results containing con-
jectures and plausible explanations for the observed behavior. Comparisons
are drawn.

43

5. Experiments

Figure 5.1: Transformer-based models learned on the datasets constructed from
various instance sizes

5.1 Training on Varying Instance Sizes

The purpose of this experiment is to examine how the Transformer-based
model learns on the datasets constructed from various instance sizes.

The model was trained on the datasets containing the instance sizes 5-25
(around 700000 instances), 5-50 (around 850000 instances), 5-80 (around
860000 instances) and 5-100 (around 863000 instances) indicated as net-25,
net-50, net-80 and net-100 respectively.

Fig. 5.1 shows that the generalization ability varies according to the various
instance sizes included into the dataset: the network learned up to 25 sized
instances generalizes well until instances of size 60, then the result gets much
worse. Also, as we can see in the picture, the network learned on the instances
of sizes up to 50 and 80, generalize well up to the instances of sizes 110 and
120 respectively. The best performance is showed by the network learned on
the most sizes (i.e., the model trained with instances of sizes up to 100).

A good follow-up experiment would be to continue this evaluation into bigger
instances; this wasn’t done in the present work due to time constraints, as
generating bigger instances is a very computationally intensive and time-
consuming process.

44

............5.2. Training on Datasets with Varying Amounts of Data per Instance Size

Figure 5.2: Transformer-based models learned on the datasets constructed from
various amounts of data per instance size.

5.2 Training on Datasets with Varying Amounts
of Data per Instance Size

The purpose of this experiment is to examine how the Transformer-based
model learns on datasets containing various numbers of instances per an
instance size.

Three scenarios of training the Transformer-based model were considered. In
each scenario the maximum number of instances per an instance size used for
the whole dataset was of 9000, 20000 and 50000 respectively. The dataset
was internally divided into training, validation and testing data. The three
corresponding models (net-9000, net-20000, net-50000) were trained on the
range of instance sizes 5-100.

The resulting gaps per instance size can be observed in Fig. 5.2. The results
show, that the best performance has the network, trained on 9000 of instances.
This can be explained by the fact, that reducing the amount of instances
leads to more balanced dataset, which affects the result positively.

A good follow-up experiment would be to continue this evaluation into bigger
instances; this wasn’t done in the present work due to time constraints, as
generating bigger instances is a very computationally intensive and time-
consuming process.

45

5. Experiments

Figure 5.3: Transformer-based models learned with differently normalized inputs.

5.3 Training with Varying Normalization Types

Several normalization schemes were applied to the same data in both the
training phase and the testing phase. The results of utilizing each of the
considered normalization schemes are presented in Fig. 5.3.

The nomenclature utilized to identify the models of the NN has the form
of normalization-net, where normalization is replaced by the corresponding
formula representing the scaling factor normalization.

The normalizations studied were introduced above; refer to section 4.2 for
more detail. We consider scaling normalizations of the form 1

k , where k ∈
{kmrsp, ksp, kmspmd, kmd}, as previously defined.

In the graph presented in Fig. 5.3, we visualize the mean, the median and the
MAD of the gap, for the models trained and tested using each corresponding
normalization. The figure shows, that the best results are given by the models
trained with the normalizations which include the sum of the processing
times. The means of these models are very similar as well as the medians.
The worst result is given by the model trained using the normalization which
doesn’t include the sum of processing times.

46

...... 5.4. Prediction Time Comparison Between Transformer-based CP Solver and ILP Solver

Figure 5.4: The comparison of the time spent in obtaining a solution by the
ILP solver and the Transformer-based CP solver.

5.4 Prediction Time Comparison Between
Transformer-based CP Solver and ILP Solver

The purpose of this experiment is to compare the amount of time spent
by the ILP solver producing an optimal solution, with the amount of time
taken by the Transformer-based CP solver in giving a final prediction of an
approx. optimal solution. The logarithm of the computational time is used
for enabling a more meaningful visualization of the results. The results of
this experiment can be seen in Fig. 5.4. Note that the model utilized in this
experiment is the one with the best performance based on the gap metric,
the net-100, which can be seen in Fig. 5.1.

We can see how the amount of time the ILP solver takes to find an optimal
solution increases in (approx.) exponential fashion with respect to the instance
size, while the time taken by the Transformer-based CP solver remains
(approx.) linear, decreasing to constant towards the end. Note that the
solution obtained by the Transformer-based CP solver is approximate, as
reported in the experiment 5.1; this might explain the variability in time
spent towards the higher values in the graph (i.e., there might be a trade-off
between decreasing the gap error and decreasing the solver time spent). A
good follow-up experiment would be to verify this intuition.

47

5. Experiments

Figure 5.5: The comparison of the Transformer-based CP solver, the LSTM-
based Seq2Seq CP solver and the EDD algorithm.

5.5 Performance Comparison Between
Transformer-based CP Solver and LSTM-based
Sequence-to-Sequence CP Solver

The purpose of this experiment is to compare the performance, measured by
the optimality gap, of the Transformer-based CP solver and the LSTM-based
Seq2Seq CP solver.

The Transformer-based model and the LSTM-based model were trained on
the instance size ranges of 5-50 and 5-40, resp. The training settings are
different because the results obtained for the LSTM-based model trained
on the instance size range of 5-50 were worse on the testing data, thus it
was discarded. The results of this experiment can be observed in Fig. 5.5.
The EDD algorithm is evaluated as the baseline method. The LSTM-based
solver performs good until the instance size 30, while the Transformer-based
solver performs stably well all along the given instance sizes and only gets
slightly worse after the size 120. One possible cause for the results is that the
Transformer is indifferent to the order of the input jobs while the LSTM-based
model takes it into account while learning. Since it is not clear which order
of input jobs would be optimal to use, it can affect the results negatively. An
additional possible cause is the recursive nature of the LSTM-based model
that results in BPTT, which is known to be harder to optimize [8].

48

Chapter 6

Conclusion

6.1 Discussion

This work is mainly focused on the design of scheduling algorithms for the
problem 1 | rj |

∑
j∈J Uj . We proposed two deep learning approaches: the

Transformer-based CP model and the LSTM-based Seq2Seq CP model. The
results of the experiments presented in sections 5.4 and 5.5, have shown that
the Transformer-based CP model outperforms the LSTM-based Seq2Seq CP
model with regards to time complexity of finding a solution, the quality of
the solution given, and the generalization ability.

The two models differ not only in their architectures, but also in how the
regression task was approached: the LSTM-based Seq2Seq CP model does
regression directly over the value of tardy jobs, while the Transformer-based
CP model learns to predict what is the fraction of jobs in the instance that
are tardy. An interesting follow-up experiment would be to verify that the
conclusions drawn from the experiments under the present conditions, extend
to when both models have the same targets. Given the results of these
experiments, the rest of the investigation was focused on the Transformer-
based CP model.

The results of the experiment found in Section 5.3 have shown that the sum
of the processing times is a very important factor in the scaling normalization,
and it has to be present in order to obtain a good result. The experiments
found in Section 5.1 and Section 5.2 were focused on restricting the dataset: 1)
by the instance sizes; and, 2) by the amount of instances per size, respectively.
In the first case, the result matched the expectations: the model learns
better (i.e., it performs better and generalizes better) having bigger and more
varied instance sizes in the dataset. The second experiment has shown that
unbalance in the dataset plays a significant role: a smaller amount of data
which makes the dataset more balanced leads to better results.

49

6. Conclusion......................................
6.2 Future Work

Regarding follow-up work, an important investigation topic to consider is
model calibration [23, 37]. The model calibration tunes the predicted proba-
bilities to be representative of the confidence (i.e., the expected correctness)
of the prediction, given the dependency of the CP component on the quality
of the tardiness probabilities predicted. Also, it would be interesting to try
out different loss functions; in particular, the cosine loss is a good candidate
given some recent results on small data [4]. Aspects related to the data
used for training and testing, such as the balance of the data, the maximum
instance size, the distribution of the data, etc., can also be worked on, to
further understand the characteristics and limitations of the proposed models.
It is very important to derive an understanding of the generalization abilities
of the model, not only with respect to increasing instance sizes, but also with
respect to distribution shift (for instance, a small change in the relationship
between the scales of the release dates, processing times and due dates). An
issue that needs emphasizing is the generation of the dataset required for
training, evaluation and testing: as mentioned before, the generation of bigger
sized instances was not possible due to time restrictions, thus, the resulting
dataset turned out to be unbalanced. This could be addressed and done
better in future work, with more time for arranging the dataset. Finally, it
would be interesting to study a model that learns using more than one optimal
solution per instance, since it is possible that it would be able to combine
solutions that provide structural insights that the model could leverage to
learn a better predictor.

50

Bibliography

[1] Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization.
arXiv preprint, arXiv:1607.06450.

[2] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation
by jointly learning to align and translate. arXiv preprint, arXiv:1409.0473.

[3] Baptiste, P., Peridy, L., and Pinson, E. (2003). A branch and bound to
minimize the number of late jobs on a single machine with release time
constraints. European Journal of Operational Research, 144(1):1–11.

[4] Barz, B. and Denzler, J. (2019). Deep learning on small datasets without
pre-training using cosine loss. arXiv preprint, arXiv:1901.09054.

[5] Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio, S. (2017). Neural
combinatorial optimization with reinforcement learning. arXiv preprint,
arXiv:1611.09940.

[6] Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled
sampling for sequence prediction with recurrent neural networks. arXiv
preprint, arXiv:1506.03099.

[7] Bengio, Y., Lodi, A., and Prouvost, A. (2018). Machine learning for com-
binatorial optimization: a methodological tour d’horizon. arXiv preprint,
arXiv:1811.06128.

[8] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term
dependencies with gradient descent is difficult. IEEE Transactions on
Neural Networks, 5(2):157–166.

[9] Bouška, M., Novák, A., Šůcha, P., Módos, I., and Hanzálek, Z. (2020).
Data-driven algorithm for scheduling with total tardiness. Proceedings of
the 9th International Conference on Operations Research and Enterprise
Systems, pages 59–68.

[10] Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., and Bengio, Y. (2014). Learning phrase representations using

51

6. Conclusion......................................
RNN encoder–decoder for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1724–1734, Doha, Qatar. Association for Computational
Linguistics.

[11] Choi, H.-S., Kim, J.-S., and Lee, D.-H. (2011). Real-time scheduling for
reentrant hybrid flow shops: A decision tree based mechanism and its appli-
cation to a tft-lcd line. Expert Systems With Applications, 38(4):3514–3521.

[12] Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B., and Song, L. (2018).
Learning combinatorial optimization algorithms over graphs. arXiv preprint,
arXiv:1704.01665.

[13] Dauzère-Pérès, S. and Sevaux, M. (2003). Using lagrangean relaxation
to minimize the weighted number of late jobs on a single machine. Naval
Research Logistics (NRL), 50(3):273–288.

[14] Dauzère-Pérès, S. (1995). Minimizing late jobs in the general one machine
scheduling problem. European Journal of Operational Research, 81(1):134–
142.

[15] Dyer, M. E. and Wolsey, L. A. (1990). Formulating the single machine
sequencing problem with release dates as a mixed integer program. Discrete
Applied Mathematics, 26(2):255–270.

[16] Erschler, J., Fontan, G., Mercé, C., and Roubellat, F. (1983). A new
dominance concept in scheduling n jobs on a single machine with ready
times and due dates. Operations Research, 31(1):114–127.

[17] Evans, R. and Gao, J. (2016). Deepmind ai reduces google data cen-
tre cooling bill by 40%. URL: https://deepmind. com/blog/deepmind-ai-
reduces-google-data-centre-cooling-bill-40.

[18] Garraffa, M., Shang, L., Della Croce, F., and T’kindt, V. (2018). An
exact exponential branch-and-merge algorithm for the single machine total
tardiness problem. Theoretical Computer Science, 745:133–149.

[19] Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks
and the bias/variance dilemma. Neural Computation, 4(1):1–58.

[20] Gers, F. A., Schraudolph, N. N., and Schmidhuber, J. (2003). Learning
precise timing with lstm recurrent networks. Journal of Machine Learning
Research, 3:115–143.

[21] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning.
MIT Press. http://www.deeplearningbook.org.

[22] Grabot, B. and Geneste, L. (1994). Dispatching rules in scheduling
dispatching rules in scheduling: a fuzzy approach. International Journal
of Production Research, 32(4):903–915.

52

http://www.deeplearningbook.org

.....................................6.2. Future Work

[23] Guo, C., Pleiss, G., Sun, Y., andWeinberger, K. Q. (2017). On calibration
of modern neural networks. arXiv preprint, arXiv:1706.04599.

[24] Hall, N. G. (1986). Scheduling problems with generalized due dates. IIE
transactions, 18(2):220–222.

[25] Hall, N. G., Sethi, S. P., and Sriskandarajah, C. (1991). On the com-
plexity of generalized due date scheduling problems. European Journal of
Operational Research, 51(1):100–109.

[26] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory.
Neural Computation, 9(8):1735–1780.

[27] Jeong, K.-C. and Kim, Y.-D. (1998a). A real-time scheduling mechanism
for a flexible manufacturing system: Using simulation and dispatching
rules. International Journal of Production Research, 36(9):2609–2626.

[28] Jeong, K.-C. and Kim, Y.-D. (1998b). A real-time scheduling mechanism
for a flexible manufacturing system: Using simulation and dispatching
rules. International Journal of Production Research, 36(9):2609–2626.

[29] Kise, H., Ibaraki, T., and Mine, H. (1978). A solvable case of the
one-machine scheduling problem with ready and due times. Operations
Research, 26(1):121–126.

[30] Kool, W., van Hoof, H., and Welling, M. (2019). Attention, learn to
solve routing problems! arXiv preprint, arXiv:1803.08475.

[31] Lasserre, J. B. and Queyranne, M. (1992). Generic scheduling polyhe-
dra and a new mixed-integer formulation for single-machine scheduling.
International Publisher C.O, pages 136–149.

[32] Lawler, E. L. (1994). Knapsack-like scheduling problems, the moore-
hodgson algorithm and the ‘tower of sets’ property. Mathematical and
Computer Modelling, 20(2):91–106.

[33] Lenstra, J., Rinnooy Kan, A., and Brucker, P. (1977). Complexity of
machine scheduling problems. In Hammer, P., Johnson, E., Korte, B.,
and Nemhauser, G., editors, Studies in Integer Programming, volume 1 of
Annals of Discrete Mathematics, pages 343–362. Elsevier.

[34] Luong, M., Pham, H., and Manning, C. D. (2015). Effective ap-
proaches to attention-based neural machine translation. arXiv preprint,
arXiv:1508.04025.

[35] Mao, H., Alizadeh, M., Menache, I., and Kandula, S. (2016). Resource
management with deep reinforcement learning. In Proceedings of the 15th
ACM Workshop on Hot Topics in Networks, HotNets ’16, page 50–56, New
York, NY, USA. Association for Computing Machinery.

53

6. Conclusion......................................
[36] Molaee, E., Moslehi, G., and Reisi, M. (2011). Minimizing maximum

earliness and number of tardy jobs in the single machine scheduling problem
with availability constraint. Computers Mathematics with Applications,
62(9):3622–3641.

[37] Müller, R., Kornblith, S., and Hinton, G. E. (2019). When does label
smoothing help? arXiv preprint, arXiv:1906.02629.

[38] M’Hallah, R. and Bulfin, R. (2007). Minimizing the weighted number of
tardy jobs on a single machine with release dates. European Journal of
Operational Research, 176(2):727–744.

[39] Ourari, S., Briand, C., and Bouzouia, B. (2009). A MIP approach for
the minimization of the number of late jobs in single machine scheduling.

[40] Pinedo, M. L. (2008). Scheduling: Theory, Algorithms, and Systems.
Springer Publishing Company, Incorporated, 3rd edition.

[41] Quinlan, J. R. (1986). Induction of decision trees. Machine Learning,
1(1):81–106.

[42] Shahrabi, J., Adibi, M. A., and Mahootchi, M. (2017). A reinforcement
learning approach to parameter estimation in dynamic job shop scheduling.
Computers Industrial Engineering, 110:75–82.

[43] Smith-Miles, K. and Bowly, S. (2015). Generating new test instances by
evolving in instance space. Computers Operations Research, 63(C):102–113.

[44] Sutskever, I., Vinyals, O., and Le, Q. V. (2014a). Sequence to sequence
learning with neural networks. In Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2, NIPS’14,
page 3104–3112, Cambridge, MA, USA. MIT Press.

[45] Sutskever, I., Vinyals, O., and Le, Q. V. (2014b). Sequence to sequence
learning with neural networks. arXiv preprint, arXiv:1409.3215.

[46] Valente, J. M. S. and Alves, R. A. F. S. (2005). An exact approach to
early/tardy scheduling with release dates. Computers Operations Research,
32(11):2905–2917.

[47] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., and Polosukhin, I. (2017a). Attention is all you need.
arXiv preprint, arXiv:1706.03762.

[48] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L. u., and Polosukhin, I. (2017b). Attention is all you need.
In Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc.

[49] Vinyals, O., Fortunato, M., and Jaitly, N. (2017). Pointer networks.
arXiv preprint, arXiv:1506.03134.

54

.....................................6.2. Future Work

[50] Wang, Y.-C. and Usher, J. M. (2005). Application of reinforcement
learning for agent-based production scheduling. Engineering Applications
of Artificial Intelligence, 18(1):73–82.

[51] Ye, Y., Ren, X., Wang, J., Xu, L., Guo, W., Huang, W., and Tian, W.
(2018). A new approach for resource scheduling with deep reinforcement
learning. arXiv preprint, arXiv:1806.08122.

55

	Introduction
	Related work
	Scheduling
	Machine Learning
	Challenges
	Feasibility
	Modeling
	Scaling
	Data Generation

	Background Theory
	Types of ml Tasks
	Performance Measure
	ML Model Generalization and the Bias-Variance Trade-Off
	Overfitting and Underfitting
	Hyperparameters
	Recurrent Neural Networks
	Teacher Forcing
	Gated rnn and The Long Short-Term Memory

	Sequence-to-Sequence Models
	Attention Mechanisms
	Self-Attention
	Scaled Dot-Product Attention
	Multi-Head Attention
	Bahdanau Attention
	Main Idea
	Formulation

	Luong Attention

	Transformers
	Architecture of the Transformer

	Proposed Methods
	Data Generation
	Normalization of the Input to the NN Models
	Proposed Models for Tardiness Prediction
	Definitions
	Model 1: Structured Tardiness Probability P(o | x;) Using the LSTM-based Sequence-to-Sequence Model
	Model 2: Structured Tardiness Probability P(o | x;) Using the Transformer-based Model

	Accuracy Criteria of the NN
	Construction of the Schedule with the CP
	Implementation details

	Experiments
	Training on Varying Instance Sizes
	Training on Datasets with Varying Amounts of Data per Instance Size
	Training with Varying Normalization Types
	Prediction Time Comparison Between Transformer-based CP Solver and ILP Solver
	Performance Comparison Between Transformer-based CP Solver and LSTM-based Sequence-to-Sequence CP Solver

	Conclusion
	Discussion
	Future Work

	Bibliography

